Cartesian Tensors

This undergraduate text provides an introduction to the theory of Cartesian tensors, defining tensors as multilinear functions of direction, and simplifying many theorems in a manner that lends unity to the subject. The author notes the importance of the analysis of the structure of tensors in terms of spectral sets of projection operators as part of the very substance of quantum theory. He therefore provides an elementary discussion of the subject, in addition to a view of isotropic tensors and spinor analysis within the confines of Euclidean space. The text concludes with an examination of tensors in orthogonal curvilinear coordinates. Numerous examples illustrate the general theory and indicate certain extensions and applications. 1960 edition.
465 printed pages
Original publication


How did you like the book?

Sign in or Register
Drag & drop your files (not more than 5 at once)