bookmate game
Atul Gawande

The Checklist Manifesto

Notify me when the book’s added
To read this book, upload an EPUB or FB2 file to Bookmate. How do I upload a book?
  • allsafehas quoted4 years ago
    Medicine, with its dazzling successes but also frequent failures, therefore poses a significant challenge: What do you do when expertise is not enough? What do you do when even the super-specialists fail? We’ve begun to see an answer, but it has come from an unexpected source—one that has nothing to do with medicine at all.
  • allsafehas quoted4 years ago
    Those who survive line infections spend on average a week longer in intensive care. And this is just one of many risks. After ten days with a urinary catheter, 4 percent of American ICU patients develop a bladder infection. After ten days on a ventilator, 6 percent develop bacterial pneumonia, resulting in death 40 to 45 percent of the time. All in all, about half of ICU patients end up experiencing a serious complication, and once that occurs the chances of survival drop sharply.

    It was another week before DeFilippo recovered sufficiently from his infections to come off the ventilator and two months before he left the hospital. Weak and debilitated, he lost his limousine business and his home, and he had to move in with his sister. The tube draining bile still dangled from his abdomen; when he was stronger, I was going to have to do surgery to reconstruct the main bile duct from his liver. But he survived. Most people in his situation do not.

    Here, then, is the fundamental puzzle of modern medical care: you have a desperately sick patient and in order to have a chance of saving him you have to get the knowledge right and then you have to make sure that the 178 daily tasks that follow are done correctly—
  • allsafehas quoted4 years ago
    There is complexity upon complexity. And even specialization has begun to seem inadequate. So what do you do?

    The medical profession’s answer has been to go from specialization to superspecialization. I told DeFilippo’s ICU story, for instance, as if I were the one tending to him hour by hour. That, however, was actually an intensivist (as intensive care specialists like to be called). As a general surgeon, I like to think I can handle most clinical situations. But, as the intricacies involved in intensive care have grown, responsibility has increasingly shifted to super-specialists. In the past decade, training programs focusing on critical care have opened in most major American and European cities, and half of American ICUs now rely on superspecialists.

    Expertise is the mantra of modern medicine. In the early twentieth century, you needed only a high school diploma and a one-year medical degree to practice medicine. By the century’s end, all doctors had to have a college degree, a four-year medical degree, and an additional three to seven years of residency training in an individual field of practice—pediatrics, surgery, neurology, or the like.
  • allsafehas quoted4 years ago
    DeFilippo’s chief problem had been liver damage from his prior operation: the main duct from his liver was severed and was leaking bile, which is caustic—it digests the fat in one’s diet and was essentially eating him alive from the inside. He had become too sick to survive an operation to repair the leak. So once we had stabilized him, we tried a temporary solution—we had radiologists place a plastic drain, using CT guidance, through his abdominal wall and into the severed duct in order to draw out the leaking bile. They found so much that they had to place three drains—one inside the duct and two around it. But, as the bile drained out, his fevers subsided. His need for oxygen and fluids diminished, and his blood pressure returned to normal. He was beginning to mend. Then, on the eleventh day, just as we were getting ready to take him off the ventilator, he again developed high, spiking fevers, his blood pressure sank, and his blood-oxygen levels plummeted again. His skin became clammy. He got shaking chills.

    We couldn’t understand what had happened. He seemed to have developed an infection, but our X-rays and CT scans failed to turn up a source. Even after we put him on four antibiotics, he continued to spike fevers. During one fever, his heart went into fibrillation. A Code Blue was called. A dozen nurses and doctors raced to his bedside, slapped electric paddles onto his chest, and shocked him. His heart responded and went back into rhythm. It took two more days for us to figure out what had gone wrong. We considered the possibility that one of his lines had become infected, so we put in new lines and sent the old ones to the lab for culturing. Forty-eight hours later, the results returned. All the lines were infected. The infection had probably started in one line, which perhaps was contaminated during insertion, and spread through DeFilippo’s bloodstream to the others. Then they all began spilling bacteria into him, producing the fevers and steep decline.

    This is the reality of intensive care: at any point, we are as apt to harm as we are to heal. Line infections are so common that they are considered a routine complication.
  • allsafehas quoted4 years ago
    There are dangers simply in lying unconscious in bed for a few days. Muscles atrophy. Bones lose mass. Pressure ulcers form. Veins begin to clot. You have to stretch and exercise patients’ flaccid limbs daily to avoid contractures; you have to give subcutaneous injections of blood thinners at least twice a day, turn patients in bed every few hours, bathe them and change their sheets without knocking out a tube or a line, brush their teeth twice a day to avoid pneumonia from bacterial buildup in their mouths. Add a ventilator, dialysis, and the care of open wounds, and the difficulties only accumulate.
  • allsafehas quoted4 years ago
    Now survival is commonplace, and a substantial part of the credit goes to the abilities intensive care units have developed to take artificial control of failing bodies. Typically, this requires a panoply of technology—a mechanical ventilator and perhaps a tracheostomy tube if the lungs have failed, an aortic balloon pump if the heart has given out, a dialysis machine if the kidneys don’t work. If you are unconscious and can’t eat, silicone tubing can be surgically inserted into your stomach or intestines for formula feeding. If your intestines are too damaged, solutions of amino acids, fatty acids, and glucose can be infused directly into your bloodstream.
  • allsafehas quoted4 years ago
    I once saw a patient with a ganglioneuroblastoma (a rare type of tumor of the adrenal gland) and another with a nightmarish genetic condition called Li-Fraumeni syndrome, which causes inheritors to develop cancers in organs all over their bodies. Neither disease had yet made it into the pull-down menus. All I could record was, in so many words, “Other.” Scientists continue to report important new genetic findings, subtypes of cancer, and other diagnoses—not to mention treatments—almost weekly. The complexity is increasing so fast that even the computers cannot keep up.
  • allsafehas quoted5 years ago
    Harvard Vanguard, it aimed to provide people with the full range of outpatient medical services they might need over the course of their lives. It has since tried to stick with that plan, but doing so hasn’t been easy. To keep up with the explosive growth in medical capabilities, the clinic has had to build more than twenty facilities and employ some six hundred doctors and a thousand other health professionals covering fifty-nine specialties, many of which did not exist when the clinic first opened.
  • allsafehas quoted5 years ago
    offices for general internal medicine, endocrinology, genetics, hand surgery, laboratory testing, nephrology, ophthalmology, orthopedics, radiology scheduling, and urology—and that’s just one hallway.

    To handle the complexity, we’ve split up the tasks among various specialties. But even divvied up, the work can become overwhelming. In the course of one day on general surgery call at the hospital, for instance, the labor floor asked me to see a twenty-five-year-old woman with mounting right lower abdominal pain, fever, and nausea, which raised concern about appendicitis, but she was pregnant, so getting a CT scan to rule out the possibility posed a risk to the fetus. A gynecological oncologist paged me to the operating room about a woman with an ovarian mass that upon removal appeared to be a metastasis from pancreatic cancer; my colleague wanted me to examine her pancreas and decide whether to biopsy it. A physician at a nearby hospital phoned me to transfer a patient in intensive care with a large cancer that had grown to obstruct her kidneys and bowel and produce bleeding that they were having trouble controlling. Our internal medicine service called me to see a sixty-one-year-old man with emphysema so severe he had been refused hip surgery because of insufficient lung reserves; now he had a severe colon infection—an acute diverticulitis—that had worsened despite three days of antibiotics, and surgery seemed his only option. Another service asked for help with a fifty-two-year-old man with diabetes, coronary artery disease, high blood pressure, chronic kidney failure, severe obesity, a stroke, and now a strangulating groin hernia. And an internist called about a young, otherwise healthy woman with a possible rectal abscess to be lanced.

    Confronted with cases of such variety and intricacy—in one day, I’d had six patients with six completely different primary medical problems and a total of twenty-six different additional diagnoses
  • allsafehas quoted5 years ago
    To save this one child, scores of people had to carry out thousands of steps correctly: placing the heart-pump tubing into her without letting in air bubbles; maintaining the sterility of her lines, her open chest, the exposed fluid in her brain; keeping a temperamental battery of machines up and running. The degree of difficulty in any one of these steps is substantial. Then you must add the difficulties of orchestrating them in the right sequence, with nothing dropped, leaving some room for improvisation, but not too much.

    For every drowned and pulseless child rescued, there are scores more who don’t make it—and not just because their bodies are too far gone. Machines break down; a team can’t get moving fast enough; someone fails to wash his hands and an infection takes hold. Such cases don’t get written up in the Annals of Thoracic Surgery, but they are the norm, though people may not realize it.

    I think we have been fooled about what we can expect from medicine—fooled, one could say, by penicillin. Alexander Fleming’s 1928 discovery held out a beguiling vision of health care and how it would treat illness or injury in the future: a simple pill or injection would be capable of curing not just one condition but perhaps many. Penicillin, after all, seemed to be effective against an astonishing variety of previously untreatable infectious diseases. So why not a similar cure-all for the different kinds of cancer? And why not something equally simple to melt away skin burns or to reverse cardiovascular disease and strokes?

    Medicine didn’t turn out this way, though. After a century of incredible discovery, most diseases have proved to be far more particular and difficult to treat. This is true even for the infections doctors once treated with penicillin: not all bacterial strains were susceptible and those that were soon developed resistance. Infections today require highly individualized treatment, sometimes with multiple therapies, based on a given strain’s pattern of antibiotic susceptibility, the condition of the patient, and which organ systems are affected. The model of medicine in the modern age seems less and less like penicillin and more and more like what was required for the girl who nearly drowned. Medicine has become the art of managing extreme complexity—and a test of whether such complexity can, in fact, be humanly mastered.
fb2epub
Drag & drop your files (not more than 5 at once)