La relación entre la cristalografía y las matemáticas se remonta a los inicios del estudio de los cristales: podemos ver a Kepler, sobre el puente de Viena, observando los copos de nieve que se depositan en su abrigo. Las matemáticas le permitieron descifrar las simetrías en la singular disposición de su estructura. También en la cristalografía moderna encontramos otra relación entre las dos disciplinas: la difracción, que es el fenómeno que permitió estudiar de manera rigurosa los cristales; se asienta teóricamente en la transformada de Fourier, un desarrollo muy importante del análisis matemático del siglo XIX. El objetivo de este libro es resaltar esta hermandad y presentar los puntos básicos de encuentro, como la simetría y los grupos (cristalográficos y algebraicos), siguiendo la historia de su descubrimiento y mostrando la profundidad de estos conceptos, con aplicaciones al estudio de la vida, los virus, las proteínas, etc