Books
Fouad Sabry

Particle Filter

What is Particle Filter

Particle filters, or sequential Monte Carlo methods, are a set of Monte Carlo algorithms used to find approximate solutions for filtering problems for nonlinear state-space systems, such as signal processing and Bayesian statistical inference. The filtering problem consists of estimating the internal states in dynamical systems when partial observations are made and random perturbations are present in the sensors as well as in the dynamical system. The objective is to compute the posterior distributions of the states of a Markov process, given the noisy and partial observations. The term “particle filters” was first coined in 1996 by Pierre Del Moral about mean-field interacting particle methods used in fluid mechanics since the beginning of the 1960s. The term “Sequential Monte Carlo” was coined by Jun S. Liu and Rong Chen in 1998.

How you will benefit

(I) Insights, and validations about the following topics:

Chapter 1: Particle filter

Chapter 2: Importance sampling

Chapter 3: Point process

Chapter 4: Fokker-Planck equation

Chapter 5: Wiener's lemma

Chapter 6: Klein-Kramers equation

Chapter 7: Mean-field particle methods

Chapter 8: Dirichlet kernel

Chapter 9: Generalized Pareto distribution

Chapter 10: Superprocess

(II) Answering the public top questions about particle filter.

(III) Real world examples for the usage of particle filter in many fields.

Who this book is for

Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of Particle Filter.
698 printed pages
Original publication
2024
Publication year
2024
Have you already read it? How did you like it?
👍👎
fb2epub
Drag & drop your files (not more than 5 at once)