Henry Garner

Clojure for Data Science

Statistics, big data, and machine learning for Clojure programmers
About This BookWrite code using Clojure to harness the power of your dataDiscover the libraries and frameworks that will help you succeedA practical guide to understanding how the Clojure programming language can be used to derive insights from dataWho This Book Is ForThis book is aimed at developers who are already productive in Clojure but who are overwhelmed by the breadth and depth of understanding required to be effective in the field of data science. Whether you're tasked with delivering a specific analytics project or simply suspect that you could be deriving more value from your data, this book will inspire you with the opportunities–and inform you of the risks–that exist in data of all shapes and sizes.
What You Will LearnPerform hypothesis testing and understand feature selection and statistical significance to interpret your results with confidenceImplement the core machine learning techniques of regression, classification, clustering and recommendationUnderstand the importance of the value of simple statistics and distributions in exploratory data analysisScale algorithms to web-sized datasets efficiently using distributed programming models on Hadoop and SparkApply suitable analytic approaches for text, graph, and time series dataInterpret the terminology that you will encounter in technical papersImport libraries from other JVM languages such as Java and ScalaCommunicate your findings clearly and convincingly to nontechnical colleaguesIn DetailThe term “data science” has been widely used to define this new profession that is expected to interpret vast datasets and translate them to improved decision-making and performance. Clojure is a powerful language that combines the interactivity of a scripting language with the speed of a compiled language. Together with its rich ecosystem of native libraries and an extremely simple and consistent functional approach to data manipulation, which maps closely to mathematical formula, it is an ideal, practical, and flexible language to meet a data scientist's diverse needs.
Taking you on a journey from simple summary statistics to sophisticated machine learning algorithms, this book shows how the Clojure programming language can be used to derive insights from data. Data scientists often forge a novel path, and you'll see how to make use of Clojure's Java interoperability capabilities to access libraries such as Mahout and Mllib for which Clojure wrappers don't yet exist. Even seasoned Clojure developers will develop a deeper appreciation for their language's flexibility!
You'll learn how to apply statistical thinking to your own data and use Clojure to explore, analyze, and visualize it in a technically and statistically robust way. You can also use Incanter for local data processing and ClojureScript to present interactive visualisations and understand how distributed platforms such as Hadoop sand Spark's MapReduce and GraphX's BSP solve the challenges of data analysis at scale, and how to explain algorithms using those programming models.
Above all, by following the explanations in this book, you'll learn not just how to be effective using the current state-of-the-art methods in data science, but why such methods work so that you can continue to be productive as the field evolves into the future.
Style and approachThis is a practical guide to data science that teaches theory by example through the libraries and frameworks accessible from the Clojure programming language.
1,060 printed pages



    How did you like the book?

    Sign in or Register

On the bookshelves

Drag & drop your files (not more than 5 at once)