Открытие диссипативных структур, т.е. структур, существующих лишь постольку, поскольку система диссипирует (рассеивает) энергию и, следовательно, производит энтропию, было совершенно неожиданным. Рассмотрим хорошо знакомый всем пример - отопление жилого дома зимой. При хорошей теплоизоляции отопление вообще можно выключить после того, как в помещениях установится желательная температура. Это - состояние равновесия. Но если в оконных рамах есть щели, то для поддержания баланса между потерями тепла и подводом тепла нам придется топить непрерывно. Такой тепловой баланс представляет собой стационарное состояние. Чем менее совершенна теплоизоляция, тем больше тепла придется подводить, т.е. тем дальше отходит система от равновесия. Здесь мы не ожидаем ничего нового: чем дальше мы отходим от равновесия, тем большую цену приходится нам платить за все большие теплопотери. Но так происходит не всегда. Для некоторых систем может быть установлен порог, начиная с которого поведение системы коренным образом изменяется. Под названием "диссипативные структуры" принято понимать организованное поведение, которое может при этом возникнуть, знаменуя поразительную взаимосвязь двух противоположных аспектов равновесной термодинамики: диссипации, обусловленной порождающей энтропию активностью, и порядка, нарушаемого, согласно традиционным представлениям этой, самой диссипацией.
Исследованием диссипативных структур особенно интенсивно занимались две науки - гидродинамика и химическая кинетика. Рассмотрим сначала пример из гидродинамики - так называемую неустойчивость Бенара, Речь идет о следующей системе. В тонком слое жидкости поддерживается разность температур между нижней, подогреваемой, поверхностью и верхней поверхностью, которая находится при комнатной температуре. При малой разности температур, т.е. вблизи равновесия, перенос тепла осуществляется за счет теплопроводности, т.е. столкновений между молекулами. Выше определенного порога разности температур тепло переносится за счет конвекции, т.е. молекулы участвуют в коллективных движениях, соответствующих вихрям, разделяющим слой жидкости на регулярные "ячейки" - вихри Бенара.
Возникновение коллективного движения означает спонтанное нарушение пространственной симметрии. Вблизи равновесия жидкость однородна, движение молекул некогерентно и хорошо описывается вероятностными законами. Но когда наступает неустойчивость Бенара, ситуация изменяется: в одной точке пространства молекулы поднимаются, в другой - опускаются как по команде. Однако никакой команды в действительности "не раздается", поскольку в систему не вводится никакая новая упорядочивающая сила. Открытие диссипативных структур потому и вызвало столь сильное удивление, что в результате одной-единственной тепловой связи, наложенной на слой жидкости, одни и те же молекулы, взаимодействующие посредством случайных столкновений, могут начать когерентное коллективное движение.