Books
Alok Kumar

Practical Full Stack Machine Learning

Practical Full-Stack Machine Learning' introduces data professionals to a set of powerful, open-source tools and concepts required to build a complete data science project. This book is written in Python, and the ML solutions are language-neutral and can be applied to various software languages and concepts.

The book covers data pre-processing, feature management, selecting the best algorithm, model performance optimization, exposing ML models as API endpoints, and scaling ML API. It helps you learn how to use cookiecutter to create reusable project structures and templates. It explains DVC so that you can implement it and reap the same benefits in ML projects.It also covers DASK and how to use it to create scalable solutions for pre-processing data tasks. KerasTuner, an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search will be covered in this book. It explains ensemble techniques such as bagging, stacking, and boosting methods and the ML-ensemble framework to easily and effectively implement ensemble learning.
The book also covers how to use Airflow to automate your ETL tasks for data preparation. It explores MLflow, which allows you to train, reuse, and deploy models created with any library. It teaches how to use fastAPI to expose and scale ML models as API endpoints.
571 printed pages
Copyright owner
BPB Publications
Original publication
2021
Have you already read it? How did you like it?
👍👎
fb2epub
Drag & drop your files (not more than 5 at once)