Books
Fouad Sabry

Eigenface

What is Eigenface

An eigenface is the name given to a set of eigenvectors when used in the computer vision problem of human face recognition. The approach of using eigenfaces for recognition was developed by Sirovich and Kirby and used by Matthew Turk and Alex Pentland in face classification. The eigenvectors are derived from the covariance matrix of the probability distribution over the high-dimensional vector space of face images. The eigenfaces themselves form a basis set of all images used to construct the covariance matrix. This produces dimension reduction by allowing the smaller set of basis images to represent the original training images. Classification can be achieved by comparing how faces are represented by the basis set.

How you will benefit

(I) Insights, and validations about the following topics:

Chapter 1: Eigenface

Chapter 2: Principal component analysis

Chapter 3: Singular value decomposition

Chapter 4: Eigenvalues and eigenvectors

Chapter 5: Eigendecomposition of a matrix

Chapter 6: Kernel principal component analysis

Chapter 7: Matrix analysis

Chapter 8: Linear dynamical system

Chapter 9: Multivariate normal distribution

Chapter 10: Modes of variation

(II) Answering the public top questions about eigenface.

(III) Real world examples for the usage of eigenface in many fields.

Who this book is for

Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of Eigenface.
858 printed pages
Original publication
2024
Publication year
2024
Have you already read it? How did you like it?
👍👎
fb2epub
Drag & drop your files (not more than 5 at once)