Aun dentro de su dominio preferencial, el reconocimiento veloz de las formas, los algoritmos actuales chocan con un segundo problema: son mucho menos eficaces que el cerebro humano. Y en el estadío que alcanzó en la actualidad, el machine learning consiste en poner a funcionar procesadores en millones, e incluso miles de millones, de pruebas de práctica. Esa modalidad pierde de vista la economía de los datos, ya que considera que machine learning es sinónimo de big data: sin una enorme cantidad de información, los algoritmos no consiguen extraer conocimientos abstractos generalizables a situaciones nuevas. En síntesis, no hacen el mejor uso de los datos.